Non-Stationary Pipe Conveying Fluid

Non-Stationary Pipe Conveying Fluid

Contents

In this demo, we set the flow velocity to be 6, where the pipe system is under flutter. We construct a 2D unstable SSM around the unstable straight configuration. We expect there exists a stable limit cycle on the SSM. Under the addition of base harmonic excitation, the stable limit cycle is perturbed as stable torus. We are interested in the persistence of the torus under the change of excitation frquency and amplitude. More details can be found in [1]

[1] M. Li, H. Yan, L. Wang: Nonlinear model reduction for a cantilevered pipe conveying fluid: A system with asymmetric damping and stiffness matrices. MSSP. 2023. https://doi.org/10.1016/j.ymssp.2022.109993

clearvars
close all

Example setup

The -degree of freedom dynamical system is of the form

where represents the nonlinearities and , , and are the mass, stiffness, and damping matrices, respectively.

We rewrite the system in first-order form as

with

.

clear all;
nmodes = 4;
fcload = 1;
flowspeed = 6;
miu = 0;
Gamma=0;
alpha=0.001;
beta=0.2;
[M, C, K, fnl, fext] = build_model(nmodes,flowspeed,beta,miu,Gamma,alpha,'clamped-free','nonlinear_damp');
n = size(M,1);    % mechanical dofs (axial def, transverse def, angle)
[F, lambda] = functionFromTensors(M, C, K, fnl);
lambda = sort(lambda);
Getting linear and nonlinearity coefficients
Loaded coefficients from storage

Create dynamical system

order = 2;
DS = DynamicalSystem(order);
set(DS,'M',M,'C',C,'K',K,'fnl',fnl);
set(DS.Options,'Emax',10,'Nmax',10,'notation','multiindex')
set(DS.Options,'RayleighDamping',false)
[V,D,W] = DS.linear_spectral_analysis();
 The first 8 nonzero eigenvalues are given as 
   1.0e+02 *

   0.0076 + 0.1353i
   0.0076 - 0.1353i
  -0.0704 + 0.4747i
  -0.0704 - 0.4747i
  -0.1225 + 0.0190i
  -0.1225 - 0.0190i
  -0.1240 + 1.0973i
  -0.1240 - 1.0973i

Choose Master subspace (perform resonance analysis)

We take the pair of unstable modes as the master subspace and compute the corresponding 2D unstable SSM

S = SSM(DS);
set(S.Options, 'reltol', 1,'notation','multiindex');
order = 9;
resonant_modes = [1,2];
S.choose_E(resonant_modes);
[W0,R0] = S.compute_whisker(order);
sigma_out = -16
sigma_in = -16
Manifold computation time at order 2 = 00:00:00
Estimated memory usage at order  2 = 2.29E-02 MB
Manifold computation time at order 3 = 00:00:00
Estimated memory usage at order  3 = 2.53E-02 MB
Manifold computation time at order 4 = 00:00:00
Estimated memory usage at order  4 = 2.94E-02 MB
Manifold computation time at order 5 = 00:00:00
Estimated memory usage at order  5 = 3.46E-02 MB
Manifold computation time at order 6 = 00:00:00
Estimated memory usage at order  6 = 4.16E-02 MB
Manifold computation time at order 7 = 00:00:00
Estimated memory usage at order  7 = 5.05E-02 MB
Manifold computation time at order 8 = 00:00:00
Estimated memory usage at order  8 = 6.16E-02 MB
Manifold computation time at order 9 = 00:00:00
Estimated memory usage at order  9 = 7.52E-02 MB

Reduced dynamics in symbolic form

lamdMaster = DS.spectrum.Lambda(resonant_modes);
options = struct();
options.isauto = true;
options.isdamped = true;
options.numDigits = 4;
y = reduced_dynamics_symbolic(lamdMaster,R0,options)
 
y =
 
0.009578*rho_1^9 + 0.00558*rho_1^7 - 0.05442*rho_1^5 - 1.006*rho_1^3 + 0.7631*rho_1
         0.009245*rho_1^8 + 0.047*rho_1^6 + 0.1781*rho_1^4 + 0.5574*rho_1^2 + 13.53
 

Prediction of the emergence of isola

plot_analytical_domain(order,R0)
xlim([0.84 0.88]); ylim([-0.01 0.01])

we indeed see a converged root, which indicates that the system has isola under the addition of forcing. In addition, cubic approximation presents analytical prediction of the critical value of forcing amplitude for the merging of main and isola branches.

lamdM = lamdMaster(1);
gamma1 = R0(3).coeffs(1,2);
arho = sqrt(4*real(lamdM)^3/27/abs(real(gamma1)));
brho = imag(lamdM)+imag(gamma1)*real(lamdM)/3/abs(real(gamma1));
f = abs(W(1:n,1)'*fext*0.5);
epsc = arho/brho^2/f
epsc =

    0.0043

Convergence of backbone curve

syms rho_1 positive
[coeffs,powers]=coeffs(y(2));
tmp = simplify(log(powers));
exp_idx = double(tmp./log(rho_1));
rhosamp = 0:0.01:1.0;
orders = [3 5 7 9];
plot_backbone_curves(double(coeffs),exp_idx,rhosamp,orders)
phiend = zeros(n,1);
lamda  = zeros(n,1);
lamda(1)=1.8751040687119611664453082410782141625701117335311;
lamda(2)=4.6940911329741745764363917780198120493898967375458;
lamda(3)=7.8547574382376125648610085827645704578485419292300;
lamda(4)=10.995540734875466990667349107854702939612972774652;
lamda(5)=14.137168391046470580917046812551772068603076792975;
lamda(6)=17.278759532088236333543928414375822085934519635550;
lamda(7)=20.420352251041250994415811947947837046137288894544;
lamda(8)=23.561944901806443501520253240198075517031265990051;
for k=1:n
   x    = 1;
   phin = cos(lamda(k)*x)-cosh(lamda(k)*x)-(cos(lamda(k))+cosh(lamda(k)))/(sin(lamda(k))+sinh(lamda(k)))*...
        (sin(lamda(k)*x)-sinh(lamda(k)*x));%clamped-free
   phiend(k) = phin;
end
% disp at the free end
obsfun = @(x,mapx,nmodes) mapx*x(1:nmodes,:);
obs = @(x) obsfun(x,phiend',n);
backbone curve in physical coordiantes
set(S.FRCOptions, 'outdof',obs);
rhomax = 1;
freqrange = [0.94 1.15]*imag(D(1));
BB = S.extract_backbone(resonant_modes, freqrange, [3 5 7 9],rhomax);
sigma_out = -16
sigma_in = -16
Manifold computation time at order 2 = 00:00:00
Estimated memory usage at order  2 = 1.97E-02 MB
Manifold computation time at order 3 = 00:00:00
Estimated memory usage at order  3 = 2.22E-02 MB
gamma = 
  -1.0056 + 0.5574i

Manifold computation time at order 2 = 00:00:00
Estimated memory usage at order  2 = 2.07E-02 MB
Manifold computation time at order 3 = 00:00:00
Estimated memory usage at order  3 = 2.31E-02 MB
Manifold computation time at order 4 = 00:00:00
Estimated memory usage at order  4 = 2.72E-02 MB
Manifold computation time at order 5 = 00:00:00
Estimated memory usage at order  5 = 3.24E-02 MB
gamma = 
  -1.0056 + 0.5574i
  -0.0544 + 0.1781i

Manifold computation time at order 2 = 00:00:00
Estimated memory usage at order  2 = 2.18E-02 MB
Manifold computation time at order 3 = 00:00:00
Estimated memory usage at order  3 = 2.42E-02 MB
Manifold computation time at order 4 = 00:00:00
Estimated memory usage at order  4 = 2.83E-02 MB
Manifold computation time at order 5 = 00:00:00
Estimated memory usage at order  5 = 3.35E-02 MB
Manifold computation time at order 6 = 00:00:00
Estimated memory usage at order  6 = 4.05E-02 MB
Manifold computation time at order 7 = 00:00:00
Estimated memory usage at order  7 = 4.94E-02 MB
gamma = 
  -1.0056 + 0.5574i
  -0.0544 + 0.1781i
   0.0056 + 0.0470i

Manifold computation time at order 2 = 00:00:00
Estimated memory usage at order  2 = 2.29E-02 MB
Manifold computation time at order 3 = 00:00:00
Estimated memory usage at order  3 = 2.53E-02 MB
Manifold computation time at order 4 = 00:00:00
Estimated memory usage at order  4 = 2.94E-02 MB
Manifold computation time at order 5 = 00:00:00
Estimated memory usage at order  5 = 3.46E-02 MB
Manifold computation time at order 6 = 00:00:00
Estimated memory usage at order  6 = 4.16E-02 MB
Manifold computation time at order 7 = 00:00:00
Estimated memory usage at order  7 = 5.05E-02 MB
Manifold computation time at order 8 = 00:00:00
Estimated memory usage at order  8 = 6.16E-02 MB
Manifold computation time at order 9 = 00:00:00
Estimated memory usage at order  9 = 7.52E-02 MB
gamma = 
  -1.0056 + 0.5574i
  -0.0544 + 0.1781i
   0.0056 + 0.0470i
   0.0096 + 0.0092i

Total time spent on backbone curve computation = 00:00:03

Transient response prediction

tf = 15;
nsteps = 3000;
z0    = 0.0*V(:,1); % initial condition (here we select it based on the modal shapes)
z0(1) = 0.001;
outdof = [1:n n+1];
traj = transient_traj_on_auto_ssm(DS, resonant_modes, W0, R0, tf, nsteps, outdof, z0);
[tInt,zInt] = time_integration_transient(DS,0,...
    'nSteps', nsteps, 'nCycles', ceil(tf/2/pi), ...
    'integrationMethod','ode45','outdof',outdof,'init',z0);
figure;
plot(traj.time,traj.phy(:,1:n)*phiend,'r-','LineWidth',1); hold on
plot(tInt,zInt(:,1:n)*phiend,'b--','LineWidth',1);
xlabel('$\tau$','Interpreter',"latex",'FontSize',14);
ylabel('$w$','Interpreter',"latex",'FontSize',14);
set(gca,'FontSize',14); grid on
legend('SSM','Full')
xlim([0,min(traj.time(end),tInt(end))]);

rhosamp = [0:0.01:0.9];
plotdofs = [1 2 n+1];
plot_2D_auto_SSM(W0,rhosamp,outdof(plotdofs));
view([30 30])
hold on
plot3(traj.phy(:,plotdofs(1)),traj.phy(:,plotdofs(2)),traj.phy(:,plotdofs(3)),'r-');
plot3(zInt(:,plotdofs(1)),zInt(:,plotdofs(2)),zInt(:,plotdofs(3)),'b--');

Forced response - periodic orbit

% add Forcing
kappas = [-1; 1];
coeffs = [fext fext]/2;
epsilon = 0.0045;
DS.add_forcing(coeffs, kappas, epsilon);
set(DS.Options,'BaseExcitation',true);

set up FRC options

set(S.FRCOptions, 'nCycle',500, 'initialSolver', 'fsolve');
set(S.contOptions, 'PtMX', 300, 'h_max', 0.1);
set(S.FRCOptions, 'omegaSampStyle', 'cocoBD');
set(S.FRCOptions, 'outdof',obs,'method','continuation ep','p0',[]);
S.extract_FRC('freq',freqrange,[5,7,9]);
*****************************************
Calculating FRC using SSM with master subspace: [1  2]
sigma_out = -16
sigma_in = -16
Manifold computation time at order 2 = 00:00:00
Estimated memory usage at order  2 = 2.07E-02 MB
Manifold computation time at order 3 = 00:00:00
Estimated memory usage at order  3 = 2.31E-02 MB
Manifold computation time at order 4 = 00:00:00
Estimated memory usage at order  4 = 2.72E-02 MB
Manifold computation time at order 5 = 00:00:00
Estimated memory usage at order  5 = 3.24E-02 MB

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.


 Run='freqSubint1.ep': Continue equilibria along primary branch.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          1.28e-15  2.33e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE            om         rho1          th1          eps
    0  00:00:00   2.3316e+01      1  EP      1.3532e+01   4.8867e-01   9.4058e+00   4.5000e-03
   10  00:00:00   2.3153e+01      2          1.3437e+01   4.2190e-01   9.3437e+00   4.5000e-03
   20  00:00:00   2.2204e+01      3          1.2915e+01   2.5094e-01   8.9242e+00   4.5000e-03
   24  00:00:00   2.1887e+01      4  EP      1.2720e+01   2.1111e-01   8.8130e+00   4.5000e-03

 STEP      TIME        ||U||  LABEL  TYPE            om         rho1          th1          eps
    0  00:00:01   2.3316e+01      5  EP      1.3532e+01   4.8867e-01   9.4058e+00   4.5000e-03
   10  00:00:01   2.3305e+01      6          1.3557e+01   5.4249e-01   9.3525e+00   4.5000e-03
   13  00:00:01   2.3261e+01      7  SN      1.3559e+01   5.6955e-01   9.2936e+00   4.5000e-03
   13  00:00:01   2.3261e+01      8  FP      1.3559e+01   5.6957e-01   9.2936e+00   4.5000e-03
   15  00:00:01   2.3145e+01      9  SN      1.3558e+01   6.2001e-01   9.1466e+00   4.5000e-03
   15  00:00:01   2.3145e+01     10  FP      1.3558e+01   6.2008e-01   9.1464e+00   4.5000e-03
   20  00:00:01   2.2900e+01     11          1.3575e+01   7.1295e-01   8.7979e+00   4.5000e-03
   30  00:00:01   2.2569e+01     12          1.3712e+01   8.5179e-01   8.1192e+00   4.5000e-03
   40  00:00:01   2.2392e+01     13          1.3936e+01   9.4516e-01   7.4553e+00   4.5000e-03
   50  00:00:01   2.2280e+01     14          1.4180e+01   9.9309e-01   6.7934e+00   4.5000e-03
   60  00:00:01   2.2131e+01     15          1.4371e+01   9.8977e-01   6.1134e+00   4.5000e-03
   69  00:00:01   2.1886e+01     16  SN      1.4435e+01   9.3818e-01   5.5017e+00   4.5000e-03
   69  00:00:01   2.1886e+01     17  FP      1.4435e+01   9.3818e-01   5.5017e+00   4.5000e-03
   70  00:00:01   2.1840e+01     18          1.4433e+01   9.2692e-01   5.4135e+00   4.5000e-03
   80  00:00:01   2.1365e+01     19          1.4326e+01   8.0684e-01   4.7268e+00   4.5000e-03
   90  00:00:01   2.0749e+01     20          1.4076e+01   6.4039e-01   4.0880e+00   4.5000e-03
  100  00:00:01   2.0407e+01     21          1.3909e+01   4.9511e-01   3.8119e+00   4.5000e-03
  102  00:00:02   2.0406e+01     22  SN      1.3908e+01   4.8717e-01   3.8130e+00   4.5000e-03
  102  00:00:02   2.0406e+01     23  FP      1.3908e+01   4.8717e-01   3.8130e+00   4.5000e-03
  110  00:00:02   2.0471e+01     24          1.3941e+01   4.3367e-01   3.8714e+00   4.5000e-03
  120  00:00:02   2.1228e+01     25          1.4390e+01   2.8054e-01   4.2631e+00   4.5000e-03
  130  00:00:02   2.2214e+01     26          1.5045e+01   1.9651e-01   4.5102e+00   4.5000e-03
  138  00:00:02   2.2955e+01     27  EP      1.5562e+01   1.6244e-01   4.6119e+00   4.5000e-03
*****************************************
Calculating FRC using SSM with master subspace: [1  2]
sigma_out = -16
sigma_in = -16
Manifold computation time at order 2 = 00:00:00
Estimated memory usage at order  2 = 2.18E-02 MB
Manifold computation time at order 3 = 00:00:00
Estimated memory usage at order  3 = 2.42E-02 MB
Manifold computation time at order 4 = 00:00:00
Estimated memory usage at order  4 = 2.83E-02 MB
Manifold computation time at order 5 = 00:00:00
Estimated memory usage at order  5 = 3.35E-02 MB
Manifold computation time at order 6 = 00:00:00
Estimated memory usage at order  6 = 4.05E-02 MB
Manifold computation time at order 7 = 00:00:00
Estimated memory usage at order  7 = 4.94E-02 MB

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.


 Run='freqSubint1.ep': Continue equilibria along primary branch.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          1.02e-10  1.97e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE            om         rho1          th1          eps
    0  00:00:00   1.9652e+01      1  EP      1.3532e+01   4.8787e-01   3.1229e+00   4.5000e-03
   10  00:00:00   1.9490e+01      2          1.3432e+01   4.1949e-01   3.0563e+00   4.5000e-03
   20  00:00:00   1.8631e+01      3          1.2906e+01   2.4875e-01   2.6349e+00   4.5000e-03
   24  00:00:00   1.8344e+01      4  EP      1.2720e+01   2.1110e-01   2.5298e+00   4.5000e-03

 STEP      TIME        ||U||  LABEL  TYPE            om         rho1          th1          eps
    0  00:00:00   1.9652e+01      5  EP      1.3532e+01   4.8787e-01   3.1229e+00   4.5000e-03
   10  00:00:00   1.9675e+01      6          1.3558e+01   5.4127e-01   3.0718e+00   4.5000e-03
   14  00:00:00   1.9656e+01      7  SN      1.3560e+01   5.7676e-01   2.9926e+00   4.5000e-03
   14  00:00:00   1.9656e+01      8  FP      1.3560e+01   5.7699e-01   2.9919e+00   4.5000e-03
   15  00:00:00   1.9630e+01      9  SN      1.3560e+01   6.0784e-01   2.9031e+00   4.5000e-03
   15  00:00:00   1.9630e+01     10  FP      1.3560e+01   6.0786e-01   2.9030e+00   4.5000e-03
   20  00:00:00   1.9561e+01     11          1.3580e+01   7.0964e-01   2.5302e+00   4.5000e-03
   30  00:00:00   1.9625e+01     12          1.3726e+01   8.4985e-01   1.8538e+00   4.5000e-03
   40  00:00:00   1.9865e+01     13          1.3964e+01   9.4481e-01   1.1951e+00   4.5000e-03
   50  00:00:00   2.0175e+01     14          1.4221e+01   9.9502e-01   5.3826e-01   4.5000e-03
   60  00:00:00   2.0437e+01     15          1.4416e+01   9.9403e-01  -1.4036e-01   4.5000e-03
   69  00:00:00   2.0535e+01     16  FP      1.4473e+01   9.4981e-01  -7.0141e-01   4.5000e-03
   69  00:00:00   2.0535e+01     17  SN      1.4473e+01   9.4981e-01  -7.0141e-01   4.5000e-03
   70  00:00:01   2.0539e+01     18          1.4469e+01   9.3269e-01  -8.4089e-01   4.5000e-03
   80  00:00:01   2.0440e+01     19          1.4350e+01   8.1423e-01  -1.5260e+00   4.5000e-03
   90  00:00:01   2.0189e+01     20          1.4096e+01   6.5052e-01  -2.1641e+00   4.5000e-03
  100  00:00:01   1.9991e+01     21          1.3909e+01   4.9417e-01  -2.4714e+00   4.5000e-03
  102  00:00:01   1.9989e+01     22  SN      1.3909e+01   4.8688e-01  -2.4702e+00   4.5000e-03
  102  00:00:01   1.9989e+01     23  FP      1.3909e+01   4.8688e-01  -2.4702e+00   4.5000e-03
  110  00:00:01   2.0019e+01     24          1.3943e+01   4.3247e-01  -2.4096e+00   4.5000e-03
  120  00:00:01   2.0562e+01     25          1.4396e+01   2.7927e-01  -2.0164e+00   4.5000e-03
  130  00:00:01   2.1435e+01     26          1.5052e+01   1.9589e-01  -1.7712e+00   4.5000e-03
  138  00:00:01   2.2135e+01     27  EP      1.5562e+01   1.6244e-01  -1.6713e+00   4.5000e-03
*****************************************
Calculating FRC using SSM with master subspace: [1  2]
sigma_out = -16
sigma_in = -16
Manifold computation time at order 2 = 00:00:00
Estimated memory usage at order  2 = 2.29E-02 MB
Manifold computation time at order 3 = 00:00:00
Estimated memory usage at order  3 = 2.53E-02 MB
Manifold computation time at order 4 = 00:00:00
Estimated memory usage at order  4 = 2.94E-02 MB
Manifold computation time at order 5 = 00:00:00
Estimated memory usage at order  5 = 3.46E-02 MB
Manifold computation time at order 6 = 00:00:00
Estimated memory usage at order  6 = 4.16E-02 MB
Manifold computation time at order 7 = 00:00:00
Estimated memory usage at order  7 = 5.05E-02 MB
Manifold computation time at order 8 = 00:00:00
Estimated memory usage at order  8 = 6.16E-02 MB
Manifold computation time at order 9 = 00:00:00
Estimated memory usage at order  9 = 7.52E-02 MB

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.


 Run='freqSubint1.ep': Continue equilibria along primary branch.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          3.32e-14  1.97e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE            om         rho1          th1          eps
    0  00:00:00   1.9652e+01      1  EP      1.3532e+01   4.8775e-01   3.1230e+00   4.5000e-03
   10  00:00:00   1.9489e+01      2          1.3431e+01   4.1897e-01   3.0554e+00   4.5000e-03
   20  00:00:00   1.8628e+01      3          1.2903e+01   2.4826e-01   2.6336e+00   4.5000e-03
   24  00:00:00   1.8344e+01      4  EP      1.2720e+01   2.1110e-01   2.5298e+00   4.5000e-03

 STEP      TIME        ||U||  LABEL  TYPE            om         rho1          th1          eps
    0  00:00:00   1.9652e+01      5  EP      1.3532e+01   4.8775e-01   3.1230e+00   4.5000e-03
   10  00:00:00   1.9675e+01      6          1.3558e+01   5.4109e-01   3.0725e+00   4.5000e-03
   14  00:00:00   1.9655e+01      7  SN      1.3561e+01   5.7860e-01   2.9883e+00   4.5000e-03
   14  00:00:00   1.9655e+01      8  FP      1.3561e+01   5.7893e-01   2.9874e+00   4.5000e-03
   15  00:00:00   1.9634e+01      9  FP      1.3561e+01   6.0517e-01   2.9121e+00   4.5000e-03
   15  00:00:00   1.9633e+01     10  SN      1.3561e+01   6.0523e-01   2.9119e+00   4.5000e-03
   20  00:00:00   1.9563e+01     11          1.3581e+01   7.0931e-01   2.5336e+00   4.5000e-03
   30  00:00:00   1.9631e+01     12          1.3730e+01   8.5054e-01   1.8581e+00   4.5000e-03
   40  00:00:00   1.9879e+01     13          1.3973e+01   9.4698e-01   1.2015e+00   4.5000e-03
   50  00:00:00   2.0196e+01     14          1.4235e+01   9.9880e-01   5.4709e-01   4.5000e-03
   60  00:00:00   2.0460e+01     15          1.4432e+01   9.9854e-01  -1.3114e-01   4.5000e-03
   68  00:00:00   2.0550e+01     16  SN      1.4484e+01   9.5667e-01  -6.6762e-01   4.5000e-03
   68  00:00:00   2.0550e+01     17  FP      1.4484e+01   9.5667e-01  -6.6762e-01   4.5000e-03
   70  00:00:00   2.0553e+01     18          1.4479e+01   9.3654e-01  -8.3191e-01   4.5000e-03
   80  00:00:00   2.0448e+01     19          1.4356e+01   8.1745e-01  -1.5162e+00   4.5000e-03
   90  00:00:01   2.0194e+01     20          1.4101e+01   6.5393e-01  -2.1542e+00   4.5000e-03
  100  00:00:01   1.9993e+01     21          1.3910e+01   4.9992e-01  -2.4713e+00   4.5000e-03
  102  00:00:01   1.9989e+01     22  SN      1.3909e+01   4.8691e-01  -2.4704e+00   4.5000e-03
  102  00:00:01   1.9989e+01     23  FP      1.3909e+01   4.8691e-01  -2.4704e+00   4.5000e-03
  110  00:00:01   2.0011e+01     24          1.3934e+01   4.4022e-01  -2.4230e+00   4.5000e-03
  120  00:00:01   2.0498e+01     25          1.4346e+01   2.8939e-01  -2.0456e+00   4.5000e-03
  130  00:00:01   2.1358e+01     26          1.4995e+01   2.0081e-01  -1.7858e+00   4.5000e-03
  139  00:00:01   2.2135e+01     27  EP      1.5562e+01   1.6244e-01  -1.6713e+00   4.5000e-03
Total time spent on FRC computation upto O(5) = 00:00:04
Total time spent on FRC computation upto O(7) = 00:00:02
Total time spent on FRC computation upto O(9) = 00:00:02
nCycles = 500;
coco = cocoWrapper(DS, nCycles, obs);
set(coco.Options, 'PtMX', 1000, 'NTST',10, 'dir_name', 'bd_ld_v6');
set(coco.Options, 'NAdapt', 2, 'h_max', 200, 'MaxRes', 1);
coco.initialGuess = 'linear';
start = tic;
bd_ld = coco.extract_FRC(freqrange);
timings.cocoFRCbd_ld = toc(start)
 Run='bd_ld_v6.FRC0.0045': Continue primary family of periodic orbits.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          7.58e-02  1.80e+01    0.0    0.0    0.0
   1   1  1.51e-01  1.59e+00  6.44e-02  1.80e+01    0.0    0.0    0.0
   2   1  1.85e-01  1.35e+00  5.24e-02  1.80e+01    0.0    0.1    0.0
   3   1  2.40e-01  1.10e+00  3.99e-02  1.80e+01    0.0    0.1    0.0
   4   1  3.36e-01  8.45e-01  2.65e-02  1.80e+01    0.0    0.1    0.0
   5   1  5.40e-01  5.67e-01  1.22e-02  1.81e+01    0.0    0.1    0.0
   6   1  1.00e+00  2.66e-01  2.29e-04  1.81e+01    0.0    0.1    0.0
   7   1  1.00e+00  6.40e-03  6.41e-08  1.81e+01    0.0    0.1    0.0
   8   1  1.00e+00  1.46e-06  3.34e-15  1.81e+01    0.0    0.2    0.0
   9   1  1.00e+00  6.95e-14  6.13e-16  1.81e+01    0.0    0.2    0.0

 STEP      TIME        ||U||  LABEL  TYPE         omega    po.period          eps         amp1
    0  00:00:00   1.8075e+01      1  EP      1.2720e+01   4.9396e-01   4.5000e-03   5.3138e-02
   10  00:00:02   1.9352e+01      2          1.3451e+01   4.6712e-01   4.5000e-03   1.0482e-01
   20  00:00:03   1.9684e+01      3          1.3537e+01   4.6416e-01   4.5000e-03   1.2334e-01
   30  00:00:05   1.9884e+01      4          1.3551e+01   4.6368e-01   4.5000e-03   1.4270e-01
   31  00:00:06   1.9902e+01      5  TR      1.3551e+01   4.6366e-01   4.5000e-03   1.4469e-01
   40  00:00:07   2.0579e+01      6          1.3593e+01   4.6223e-01   4.5000e-03   1.7731e-01
   50  00:00:08   2.1332e+01      7          1.3763e+01   4.5652e-01   4.5000e-03   2.0804e-01
   60  00:00:10   2.2522e+01      8          1.4026e+01   4.4798e-01   4.5000e-03   2.2800e-01
   70  00:00:12   2.3121e+01      9          1.4292e+01   4.3964e-01   4.5000e-03   2.3520e-01
   80  00:00:14   2.3255e+01     10          1.4458e+01   4.3458e-01   4.5000e-03   2.2926e-01
   86  00:00:16   2.3097e+01     11  SN      1.4482e+01   4.3386e-01   4.5000e-03   2.2093e-01
   86  00:00:16   2.3097e+01     12  FP      1.4482e+01   4.3386e-01   4.5000e-03   2.2093e-01
   90  00:00:16   2.2862e+01     13          1.4462e+01   4.3445e-01   4.5000e-03   2.1042e-01
  100  00:00:18   2.2015e+01     14          1.4302e+01   4.3933e-01   4.5000e-03   1.8060e-01
  110  00:00:20   2.0902e+01     15          1.4035e+01   4.4769e-01   4.5000e-03   1.4253e-01
  120  00:00:21   2.0340e+01     16          1.3919e+01   4.5140e-01   4.5000e-03   1.1929e-01
  125  00:00:23   2.0236e+01     17  FP      1.3914e+01   4.5158e-01   4.5000e-03   1.1393e-01
  125  00:00:23   2.0236e+01     18  SN      1.3914e+01   4.5158e-01   4.5000e-03   1.1393e-01
  130  00:00:24   2.0173e+01     19          1.3934e+01   4.5093e-01   4.5000e-03   1.0379e-01
  140  00:00:25   2.0832e+01     20          1.4644e+01   4.2905e-01   4.5000e-03   5.3473e-02
  147  00:00:26   2.2062e+01     21  EP      1.5562e+01   4.0376e-01   4.5000e-03   3.4510e-02

timings = 

  struct with fields:

    cocoFRCbd_ld: 27.3057

Exercises: you are encouraged to reproduce the results shown in [1]. Specifically, please perform the following task